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Abstract—Transients of self-heating semiconductor devices are the transients of self-heating devices are of concern to device
theoretically investigated based on a feedback circuit model, characterization and model parameter extraction.
which is composed of three sub-circuits describing the isothermal |, this paper, explicit analytical expressions of the transients

electrical characteristics, thermal impedance, and temperature f If-heali devi derived based d
dependence of the electrical characteristics of the devices, re-0' S€ll-heaung devices are derived based on a propose

spectively. Analytical expressions of the frequency and transient feedback circuit model. In Section II, the frequency response
responses have been derived for both the electrical and thermal of self-heating devices are derived. The transient electrical
characteristics of self-heating devices, yielding accurate methods and thermal responses of self-heating devices are derived in
to extract the thermal time constant in both the time and fre- - gaction 111 and are applied in Section IV to extract the thermal
guency domains. The model is verified by the transient electrical- . . .

time constant from the measured transient electrical response

response measurement of a GalnP/GaAs heterojunction bipolar X s
transistor. of InGaP/GaAs HBT's. The results obtained are summarized

S . . in Section V.
Index Terms—Feedback, heterojunction bipolar transistor, mi- o Its d ibe for the first time: 1) both the f
crowave device, MMIC's, semiconductor device modeling, semi- ur results describe for the first time: 1) both the frequency

conductor device thermal factors, transient analysis. response and the transient response for the general case of self-
heating devices including bipolar junction transistors (BJT's),
HBT's, MOSFET's, MESFET’s and high electron-mobility
transistors (HEMT'’s); 2) the transients in both thermally stable
HE transient thermal effect must be accounted for @nd unstable states; and 3) the transients due to both negative
the high-frequency and switching performance of sel&nd positive thermal feedback. These results can be used to
heating semiconductor devices is to be accurately modeledtract the model parameters and thermal time constant, for
This applies particularly to GaAs-based and silicon-orexample, in both the time and frequency domains.
insulator (SOI) devices, where the self-heating effect is

enhanced by the low thermal conductivity of the GaAs ||, FREQUENCY RESPONSE OFSELF-HEATING DEVICES

substratg n GaAs—based. dey Ices and. the low _the_rmaLI_he self-heating effect, caused by the temperature rise due
conduct!V|ty of the back ox@e in SOI devices. Inves.tlgat|.090 the power dissipation and the temperature dependence of
8{ g;ﬁgﬂ;;;i:??;gii‘;ir:g g g?iﬂAnganghfgfggrf“f Hevice characteristics, can be regarded as a thermal-electrical

P ' P'Seedback inside the device [14]. The feedback can either be

have been reported [1}-[4]. negative or positive depending on the kind of device and
Two kinds of models, the physical and the circuit models gati P pending :
X . ) dgeratlng state of the device. In the case of an HBT with

have previously been proposed to describe the transient re-

sponse of self-heating devices. The phvsical model is baaagrounded emitter, for example, the feedback is negative
Pons g dey ' pny ositive) when a constant base current (voltage) is applied
on simultaneous calculation of the current and heat flo .

o . o . . 5]. and the amount of the thermal feedback is dependent on
inside the devices [5], [6], and the circuit model is realize

by adding thermal sub-circuits, including explicit temperaturee dissipated power.

dependence of model parameters [5]-[11]. Both of the mode] The bIOCk d|ag_rams of the p_roposed feedback cwcw; mod
: : . —els, which describe the electrical and thermal behaviors of
lead, however, to either complicated analytical expressions . : R
self-heating devices, are shown in Figs. 1 and 2. Herand

or numerical-only results. While analytical expressions havedenote the input and output signals, respectively, Ard

been reported for HBT S under a s_pecmc operating state [1| ’gwe temperature rise inside the device. The sub-ciggui}
[13], no such expressions are available for the general case 0 . : ; -
resents the isothermal gain of the device, and the sub-circuit

. ! - ) . .1e
self-heating devices. Explicit analytical expressions descnbnﬁlx called thermal impedance, describes the temperature

rise due to power dissipation. The temperature dependence

I. INTRODUCTION
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x y [22], and is thus negligible compared with the thermal time
— g(v) constant of devices, the thermal—electrical feedback coefficient
A is assumed to be independent of frequency in this study as
X
AT P(w) = ¢o )
¢ (w) Ze) where ¢y is the dc value ofp(w).

The frequency responses of the electrical and thermal char-
Fig. 1. Feedback-model block diagram of self-heating device for electricgiteristics of the devices can be obtained by substituting

characteristics. (3)—(5) into (1) and (2), respectively, and can further be
simplified as
- @ ez 5T G g0
g(w w W)= .
=17+ Jora)
f 1 }
A 14 - , 1
" 90{ = Wtjomasa-p 17
P - ©)
Fig. 2. Feedback-model block diagram of self-heating device for thermal _
characteristics. 90 <1 jw’ml>’ f=1 (7)
and
signal by way of the sub-circui$(w), which is called the goRu
thermal-electrical feedback coefficient. H(w) = T‘;T)
According to Figs. 1 and 2, the frequency response of the JWTeh R
. . . . goiith
electrical and thermal characteristics of self-heating device can 0= i+, A=l f#1 (8)
easily be derived as = ‘ J&Tih
~ 9(w) goRn/jwTin, f=1 9)
Glw) = 7 7 1) _ .
— g(w)Z(w)p(w) respectively, sinceyy, > 7, holds for BJT’s, HBT's, MOS-
and FET's, MESFET'’s, and HEMT’s. Heref = goR:¢0 is the
9(w)Z(w) dc loop gain of the feedback circuit.
H(w) = 2 When f < 1, (6) can be rewritten as
)= 1 ) Zw)o) @ f<1® )
respectively. Glw)= G+ (G — Gp) (10)

The isothermal gain refers to, for example, the current gain [L+jern(Ge/Gu)l
of HBT's, transconductance of MOSFET's, or power gain ofthere G; = (8o/1 — f) (G), = (o) is the gain of the
a two-port device, and can be expressed as [16] device in the frequency range of < 1/7y (1/7n K w <
. 1/73) by considering (neglecting) the self-heating. Since the
9(w) = g0/(1 + jwry) (3) fr/edu)eni/:y at the 3385 pc?int of %%e frequency regponse does
where go = (9y/dx)|..=0 and1/7, corresponds to the elec-not correspond directly tayy,, as shown in (10), the method
trical cutoff frequency. to extractr, in frequency domain proposed by Bruetal.
The thermal impedanc#(w) is usually modeled using an[23] should thus be modified.
RC ladder circuit, which is biased by a current proportional to
the power dissipation of the devices and generates a voltagelll. T RANSIENT RESPONSE OFSELF-HEATING DEVICES
though theRC ladder equal to the temperature rise. When a 1o rangient electrical response of a self-heating device
single-poleRC ladder circuit is usedZ(w) can be expressed

in response to a step input can be obtained from the inverse
as [17], [18]

Laplace transform [24] of (6) and (7) as

Z(w) = R /(1 + jwrin) 4) { f [ < ¢ )} }
gord 1+ —— |1—exp [ ———— )|},
where Ry, = (8T/0P,)|.=o is called the thermal resistance, B 1-f 7in/(1 = f)
and ,;, = Ruy,C the thermal time constant, an@' the y(t) = f#1 (11)

thermal capacitance, respectivel§;;, can be extracted from
the temperature dependence of the dc electrical characteristics gox(1+t/7en), F=1 (12)
[19], [20]. The transient electrical responses calculated using (11) and
While the dc behavior of the thermal—electrical feedbad{d2) are shown in Fig. 3. The device is stable wher: 1,
coefficient ¢ has been reported [21], neither the frequendpe electrical output decreases (increases) with time during
nor the transient response ¢fhas been investigated. Sincehe transient and the response becomes faster (slower) with
the time constant fory(w) is believed to be determined bythe increasing the amount of the negative (positive) feedback.
the electron scattering rate and is on the order of picosecoride device becomes unstable and may be destroyed by thermal
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Fig. 4. Calculated transient thermal responses of self-heating device. . . . .
negative (positive) thermal—electrical feedback. An expression

_ _ similar to (15) was derived by Sukt al. in the time domain

runaway [25] whenf; 2 1, and the output increases linearlyfor HBT’s with negative feedback [13]. In a similar way, (13)

(exponentially) with time forf =1 (f > 1). can also be rewritten as
In a similar way, the transient thermal response can be "
obtained from the inverse Laplace transform of (8) and (9) as AT(t) = ATy {1 — exp [—4} } (16)
Tth(ATf/ATO

goRuwnzx 3 : . ;
- [1 eXP< T f))}’ f#1 for f < 1. Here, ATy (ATy) in (16) is the temperature rise

B inside the device forf = 0 (f # 0).
AT(t) = (13) Using (11), (13), and (15), the transient electrical and
t thermal responses can related as
goRue —,  f=1 (14) P

th

_ y(t) —ui
The transient thermal responses calculated using (13) and (14) A7(t) = === ” ysBw,  f<landf#0  (17)

are shown in Fig. 4. It is interesting to note the differences be- . s L .

tween the transient thermal and transient electrical responsr?%mely' the transient temperature rnse inside the device can be
For the negative feedback, namefy < 0, the temperature calculated fro_m the.tranS|ent ele'ct.rlcal response.

inside the devices increases and the electrical output decreasc,fgom the viewpoint of curve fitting, (15) and (16) can be
during the transient. Wherf = 0, there is no correlation ©XPressed ag(f) = Ci + Ca[l — exp(~t/Cs)] and AT(f) =
between the transient electrical and thermal responses, gﬁ&l — exp(~t/C;)], respectively, and the fitting parameters,

the electrical (thermal) response is determined by the tir’H@iCh can b? determined by curve fitting, afg, C», and
constantr, (ry,) only. C; for electrical response, and aré, and C; for thermal

responsey;, us, and 7y, can be calculated from the three
fitting parameters’;, Cs, Cs, while ATy, AT, 74y, cannot be
calculated only from”y and Cs. In other words, the thermal
When the device is stablgf < 1), (11) can be rewritten as time constant cannot be extracted, in principle, only from the
¢ transient thermal response.

} } (15)

IV. TRANSIENT MEASUREMENT OF GalnP/GaAs HBT

W The transient elec'tri'cal response measurement is easy .to per-
I form and yields sufficient information to extract thermal time
wherey; = gox (ys = (goz/1 — f) in (15) is the electrical constant. The transient electrical response was measured on a

output at the initial (steady) state of the electrical transierGalnP/GaAs HBT with an emitter size 8f4 x 20 um? using

where the self-heating effect is negligible (strong). Taking thtee setup shown in Fig. 5. The transient electrical response
exponential factor ofy(¢) o [1 — exp(—t/7)] asmy, [12] may of the HBT under pulsed base—emitter voltage and dc collec-
underestimate (overestimate) the thermal time constant for—emitter voltage is shown in Fig. 6. The dots are the mea-

y(t) = yi + (ys — yt){l — exp [—
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Fig. 9. Transient electrical responses at various bias points.

mal—electrical feedback inside the device is described by
an equivalent change in input signal. Analytical expressions
of frequency and transient responses have been derived for
both electrical and thermal characteristics. A simple method to
extract the thermal time constant from the transient electrical
response has been proposed. The dependence of the thermal
response speed on the thermal feedback was confirmed, and
the thermal time constant;, = 16 s was extracted fopm?
GalnP/GaAs HBT's.
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